
A Web App Hacker’s Bag O’ Tricks

Unusual Web Bugs

Alex “kuza55” K.
kuza55@gmail.com
http://kuza55.blogspot.com/

mailto:kuza55@gmail.com
mailto:kuza55@gmail.com
http://kuza55.blogspot.com/
http://kuza55.blogspot.com/

I'm

• Alex
• Starting Uni next year
• Working for SIFT http://www.sift.com.au/

http://www.sift.com.au/
http://www.sift.com.au/

This talk is

• Not an introduction to web app security
• Not a talk about URIs or DNS Rebinding
• A talk about some new ideas and cool/obscure

things in web app security
– More like „Unusual XSS Bugs“ after editing

• A bit reliant on Flash...and they fixed most of
these things

Outline

• Exploiting Logged Out XSS Vulnerabilities
• CSRF Protected XSS
• XSS via HTTP Headers
• File Uploads
• Range/Request-Range Issues
• PHP Oddities
• Encoding Fun
• CSRF
• Other Toys

Exploiting Logged Out XSS Vulnerabilities

• Known Methods
– Browser Password Manager Abuse
– Session Fixation
– Persisting XSS

Browser Password Manager Abuse

• Browser automatically fills in passwords
– Can opt-out on Firefox

• signon.prefillForms
• Still possible if you know the username

– Fill in the username
– Focus on the username field
– Focus on the password field
– Extract the password (use setTimeout)‏

• Firefox only does a domain check
– IE does a page check and doesn’t prefill

• Load the page in an iframe, then as above

Session Fixation

• If cookies are not regenerated
• We can set the user’s cookie

– We don’t need to steal it as we already know it
– Usually we attack sites which accept cookies in the

URL
• Most 'fixes' simply stop apps from accepting session Ids via

the URL
– Here we can just use Javascript to set the cookie

$_REQUEST Variable Fixation

• Based on variables_order directive
• Defaults to EGPCS

– $_ENV
– $_GET
– $_POST
– $_COOKIE
– $_SESSION

• XSS persists until its fixed

DOM Based XSS via Persistent Data
Stores

• Client Side Stores are
– Cookies
– Flash LSO's
– Browser specific storage objects

• Persistence (IE)‏
• sessionStorage/globalStorage (Firefox)

• Client-Side stores are usually trusted to be
sanitised
– window.location = getCookie('redir');

• Once we have XSS, they can be altered at will

Exploiting Logged Out XSS Vulnerabilities

• New Ideas
– Reading The Browser Cache via XSS
– Semi-Logging the user out

Reading the Browser Cache Via XSS

• Most browsers don't serve you cached data
unless a Cache-Control or Expires header is sent
by the server

• IE does though
– Simply use XMLHttpRequest object

• No tricks required

Semi-Logging the user out

• What does it mean to be ‘logged in’?
– No, its not like the meaning of life.

• That was a Monty Python movie

• To be logged in is to send a cookie tied to a valid
session

• So when are you logged out?
– When your cookie is invalid or you don’t send a cookie

• How do we log the user out for a single request?

Semi-Logging the user out

• Stop a valid cookie being sent
– Flash to mangle the cookie

• Not in IE
• Some session handlers like PHP throw a warning, but still

create a new session.
– RequestRodeo

• Firefox Extension which strips all auth data from off-site
requests

• Nice extension, but introduces new issues

CSRF Protected XSS

• What do CSRF protections really do?
• They force you to send an additional token tied

to the valid session tied to your cookie
• Nowhere there does it say that it has to be the

user’s cookie/token combination
– So we force the user to send our own

General Case

• Log the user In as someone else
– Log the user out first

• CSRF or Wait (not long usually)‏
• Or Stop the cookies being sent

– RequestRodeo ;p

– Log the user in as yourself
• Flash (Not IE)‏
• Session Fixation

– URL Tokens

Persistent Self-Only CSRF Protected XSS

• Almost the same as the general case
– CSRF To Log the user in

• Session Fixation not required
• Works on all browsers

CAPTCHA Protected XSS

• CSRF the CAPTCHA
– Only if no nonce exists

• E.g. image.php
• Not image.php?nonce=12345678

– Get the user to fill it in

XSS via HTTP Headers

• Half the problem is getting the user to send the
necessary payload in the right place

• So we use Flash
– Which doesn't let you send all headers

General Case

• Flash doesn’t do a good job of filtering headers
– addRequestHeader (“Referer:http://whatever/”, “ “);

• No whitespace in the first argument
• Second argument is non-empty

• Cookie is allowed by Flash
– However IE filters the cookie header

CGI 1.1 Abuse

• We can use the General method until its fixed
• Some languages (PHP/ASP/Perl/ColdFusion)

implement the CGI 1.1 spec and access to
headers looks like this:
– $_SERVER[‘HTTP_USER_AGENT’]

• So we can send a User_Agent header:
– addRequestHeader (“User_Agent”, “our User-Agent“);
– Not on ASP though 

File Uploads

• Are very hard to do right
• Two categories of issues

– File names
– File content

Dangerous File Extensions

• Code execution
– .php .asp .aspx .cfm etc

• Java applets
– .class files

• If you host a malicious .class file, then the attacker can force
sockets to your IP without DNS Rebinding

• Config Files
– .htaccess etc

• Also need to watch out for NULL bytes

mod_mime Issues

• Apache has some interesting behaviour
– file.php.xyz gets executed as a .php file
– If the last extension isn’t mapped to a mime type, then

the second last is checked, if second last isn’t
mapped….etc

– List of mapped extensions in conf/mime.types

Assorted Injections

• On *nix systems, almost all chars are valid in
filenames, e.g.
– ’ OR 1=1--.txt
– <script>alert(1)</script>.txt
– Any other context you can think of

• On Windows, it’s a bit harder
– We can’t use " / \ < > ? : * |
– ’ OR 1=1--.txt
– ' style='expression(alert(1))'.txt

FindMimeFromData (IE)‏

• FindMimeFromData is an internal IE function
which decides upon a content-type for a page,
rather than strictly following a server provided
content-type header
– Allows uploaded images to be rendered as javascript

executing html pages
• Well, it used to
• M$ Silently patched over the issue

– Previously all GIF & JPG images with correct signatures would
not be rendered as html

– Now PNGs won’t either
– We still have all the other formats though, e.g. .txt .pdf

FindMimeFromData (IE)‏

• Checks are hardcoded
– Not vulnerable to encoding issues
– Only first 256 bytes are checked for these strings:

• <html
• <head
• <body
• <script
• <pre
• <table
• <a href
• <img
• <plaintext
• <title

FindMimeFromData (IE)‏

• Solutions?
– Filtering strings

• Works – unless there are other strings we haven’t found
– Microsoft haven’t confirmed whether or not that is the full list
– No difference to the average user

– Content-Disposition: attachment
• Works – IE respects the header

– Microsoft has confirmed that it should always download a file
– Users can no longer view direct image URLs directly in their browser -

viewing a URL directly causes a download

Range/Request-Range Issues

• The Range header is used to have resumable
downloads

• We can’t alter the Range header meaningfully in
Flash
– The “: “ at the end of the header screws things up

• But is there an equivalent header?
– Apache says yes:

• if (!(range = apr_table_get(r->headers_in, "Range"))) {
 range = apr_table_get(r->headers_in, "Request-Range");
 }

– in byterange_filter.c or http_protocol.c depending on the version

Range/Request-Range Issues

• We can get things sent to us completely out of
context

• Previously only static files
• In Apache 2.X.Y it is setup as a filter

– So it works on dynamic files too

Range/Request-Range Issues

• FindMimeFromData
• Stripped but not encoded data

– <a href=“http://site.com/<script>alert(1)</
script>”>link

Implicit Typeasting in PHP

• When comparing a string and an integer, the
string is converted to an integer

• If ($_GET[‘id’] == 4) {
 print $_GET[‘id’];
 }
• /page.php?id=4<script>alert(1)</script>

Timeout Attack against PHP

• ignore_user_abort is Off by default
• Means we can theoretically stop execution of the

script at any time
• Maybe we can induce unexpected states?

– When the script writes to a persistent data stores in
multiple calls

• Timing is horrible
– So we need to be able to draw things out
– Works well with multiple database calls if we have a

database intensive page

Encoding Fun

• [My]SQL Injection Encoding Attacks
• HTML Attribute Encoding

– Variable Width Character Encoding
– HTML Entity Encoding

[My]SQL Injection Encoding Attacks

• Some escaping functions are multibyte encoding
aware, e.g. mysql_real_escape_string() for PHP
– Can’t tell when the character set has been changed

through a query
• SET CHARACTER SET ‘charset’
• MySQL Only

– Need to be configured correctly
• Some aren’t, e.g. add_slashes()

– magic_quotes_* and other similar solutions

[My]SQL Injection Encoding Attacks
Method 1

• SELECT field1, field2 from items where
name=“<input>”

• SELECT field1, field2 from items where
name=“[MB Char]” UNION SELECT username,
password FROM users--”
– [MB Char] is a multibyte character where \ is the first

byte – the slash comes from the quote being escaped

[My]SQL Injection Encoding Attacks
Method 2

• SELECT * from users where
username=“<input>” and password=“<input>”

• SELECT * from users where
username=“<input>[MBChar] and password=“
OR 1=1--”
– [MBChar] is a Multibyte character, where “ or ‘ (if ‘ is

used as the quote symbol) is the last byte

[My]SQL Injection Encoding Attacks
Fuzzer Results

• Method 1
– Vulnerable Character sets

• Big5, <A1-F9>
• SJIS, <81-9F>, <E0-FC>
• GBK, <81-FE>
• CP932, <81-9F>, <E0-FC>

• Method 2
– No Vulnerable Character sets

[My]SQL Injection Encoding Attacks
Who actually does this?

• phpMyAdmin
• Less well know software

– Can be found using Google Code Search
• lang:php "SET CHARACTER SET" -utf8

– -utf8 to reduce non-vulnerable results

• So not awfully much really, but this could be
different for more international apps.

Variable Width Character Encoding

• Like the second SQL Encoding attack method
• <a href=“<input>”><input>
• ”

style=a:expression(alert(1));>text
– [MBChar] is a Multibyte character, where “ or ‘ or ´

(depending on what is used as the quote symbol) is
the last byte

• List of vulnerable charsets:
– http://ha.ckers.org/charsets.html

http://ha.ckers.org/charsets.html
http://ha.ckers.org/charsets.html

HTML Entity Encoding

• When the browser uses html attributes
–

• Is the same as
–

• So
–

• Is the same as
–

HTML Entity Encoding

• So
–

• Is the same as
–
– encoding input in event handlers with htmlentities()

doesn't help much

Admin Only SQL Injection

• Usually considered a minor issue
– or just ignored

• Often not CSRF-protected
– So if we can get them to click on a link

• Completely Blind
• Well, almost completely blind

– Timing Attacks
– Not all db data is sanitised by developers

• XSS gives us vision
– Ferruh Mavituna released a tools which is an actual HTTP

proxy via XSS
» http://www.portcullis-security.com/tools/free/xssshell-xsstunnell.zip

Admin Only SQL Injection + CSRF

http://www.portcullis-security.com/tools/free/xssshell-xsstunnell.zip
http://www.portcullis-security.com/tools/free/xssshell-xsstunnell.zip

A real ‘one-click’ attack

• M$ calls CSRF a ‘one-click attack’
• With the aid of CSS overlays we can hijack clicks

from a user and execute a real ‘one-click’ attack
– iframes with

• position: absolute;
• opacity: 0;

• When is this useful?
– When we don’t need the user to fill in a form, e.g.

• Advertising
– http://www.sirdarckcat.net/asdfg.html

• Digg
• XSS via Javascript: URIs, onclick attributes, etc

http://www.sirdarckcat.net/asdfg.html
http://www.sirdarckcat.net/asdfg.html
http://www.sirdarckcat.net/asdfg.html
http://www.sirdarckcat.net/asdfg.html

Understanding the Cookie Policy

• The Cookie Policy is weaker than the Same-
Origin Policy

• Cookies are shared over ports
– Opening non-vhost aware ports is dangerous

• Cookies may be set to be shared by domains
– sub1.sub2.foo.com can set a cookie for:

• .sub1.sub2.foo.com
• sub1.sub2.foo.com
• .sub2.foo.com
• .foo.com

– Note: the preceding dot means that it can be read by all
subdomains of that domain

XSS via non-web servers

• Since cookies are shared between ports, it
doesn’t matter what port we can XSS

• Using enctype="multipart/form-data" for a form
– New lines are not encoded

• Many plaintext protocols are forgiving about
dodgy lines such as
– HTTP / HTTP/1.1

• They also tend to echo user input back
unencoded

• Doesn't work in Firefox

Untraceable XSS

• Referers can be stripped (or faked)‏

• Some channels only the client can see
– URL fragments

• http://site.com/page.php#fragment

– window.name
• <iframe src=“http://site.com“ name=“our payload“>

Questions?

Thanks!

